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Abstract
Given a generalized (Lie–Bäcklund) vector field satisfying certain
nondegeneracy assumptions, we explicitly describe all (1 + 1)-dimensional
evolution systems that admit this vector field as a generalized conditional
symmetry. The connection with the theory of symmetries of systems of ODEs
and with the theory of invariant modules is discussed.
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Introduction

Many important partial differential equations arising in applications are not integrable via
the inverse scattering transform or explicit linearization and possess a very poor asset of
symmetries. However, among these equations we can single out conditionally (or partially)
integrable ones [1–6], for which a number of exact solutions can be found. In order to find
these solutions, one usually tries to make a substitution which reduces the equation in question
to a simpler one, as, for example, in the fabulous direct reduction method of Clarkson and
Kruskal [7]. Another strategy is to find the differential equation(s) (differential constraint(s)
[8]) compatible with the original equation, and then to look for the common solutions of the
system made of the original equation and of the differential constraint(s). The concept of
conditional symmetry, introduced by Bluman and Cole [9] and subsequently generalized by
Olver and Rosenau [10, 11], Levi and Winternitz [12], Fushchich et al [13], and Fokas and
Liu [14], cf also Grundland et al [15, 16], provides an appropriate symmetry background for
these procedures and their modifications.

To be more specific, consider a (1 + 1)-dimensional evolution system

∂u/∂t = F (x, t,u,u1, . . . ,un) n � 0 ∂F /∂un �= 0 (1)
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for an s-component vector function u = (u1, . . . , us)T , where ul = ∂lu/∂xl, l = 0, 1, 2, . . . ,
u0 ≡ u, and the superscript ‘T’ denotes the matrix transposition.

On the solution manifold of (1) we can always express the derivatives ∂l+mu/∂tl∂xm

with l > 0 via uj . Hence we lose no generality in considering only differential
constraints of the form �Q(x, t,u,u1, . . . ,uk) = 0, where �Q = (Q1, . . . ,Qb)T (cf, e.g.,
[1, 14, 17]).

Then the compatibility condition of (1) and �Q = 0 reads (cf, e.g., [14])

Dt( �Q)|M = 0. (2)

Here Dt = ∂/∂t +
∑∞

i=0 D
i(F )∂/∂ui and D ≡ Dx = ∂/∂x +

∑∞
i=0 ui+1∂/∂ui are total

derivatives with respect to t and x, and M is the solution manifold of the system �Q = 0.
Let us further specify to the case when b = s, i.e. when �Q has the same number of

components as the unknown function u, and thus �Q = 0 is a determined system. In order
to stress that b = s, we shall write Q instead of �Q. In this case the generalized vector field
Q = Q∂/∂u is nothing but generalized conditional symmetry of (1), introduced by Fokas
and Liu [14] and independently by Zhdanov [17]. Moreover, as was shown by Zhdanov [18],
for scalar evolution equations (1), i.e. when s = 1, such symmetry exists if and only if the
equation in question admits the reduction to a system of ODEs in time t.

Note that finding generalized conditional symmetries admitted by (1) with fixed F is a
highly nontrivial problem. For instance, theorem 1 of [19] states that finding a generalized
conditional symmetry of the form (u1 − η(t, x,u))∂/∂u for (1) with s = 1 is equivalent to
finding a one-parametric family of solutions of (1).

In view of the above, the classification of evolution systems (1) possessing a generalized
conditional symmetry of the prescribed form is of paramount importance [20]. If Q is
independent of t, then (2) is equivalent to the requirement that F ∂/∂u is a generalized
symmetry (depending on an extra parameter t) for the system of ODEs Q = 0, and hence the
classification in question amounts to finding all generalized symmetries of the system Q = 0.
For scalar u, i.e. for s = 1, this problem was solved by Svirshchevskii [21] for the case of
linear ODEs Q = 0, see also [22, 23]. This case was also considered by Fokas and Liu [24],
and by Athorne [25]. The complete description of the set of generalized symmetries for a
generic nonlinear ODE was obtained by Athorne in [26]. Part of these results was rediscovered
by Doyle [27] and Samokhin [28]. The latter author has also extended these results to the
case of systems of ODEs. A deep generalization of the work of Svirshchevskii to the case
of multiple space dimensions was made in the seminal paper [29] by Kamran, Milson and
Olver. In [21–24, 27, 29] the applications to construction of conditionally integrable evolution
systems (1) were presented. Let us mention that in [27] the trivial, i.e. vanishing on the
solution manifold M of Q = 0, symmetries of Q = 0 were ignored and hence the results of
[27] proved to be incomplete.

To the best of our knowledge, no attempts were made to extend the results of
[21, 24, 27, 29] to the case of explicitly time-dependent generalized conditional symmetries.
This extension is of particular interest, because the class of evolution systems admitting
the symmetries of this kind, as well as the asset of exact solutions constructed using the
reduction under these symmetries, obviously are considerably larger than those considered
in [21–24, 27, 29]. In particular, if we have an exactly solvable system of ODEs
Q(x,u, . . . ,uk, α1, . . . , αq) = 0 involving q parameters αi , we can replace these parameters
by arbitrary functions αi(t) without affecting the exact solvability. Clearly, because of
the presence of arbitrary functions αi(t) the class of evolution systems (1) admitting
Q(x,u, . . . ,uk, α1(t), . . . , αq(t))∂/∂u as a generalized conditional symmetry is considerably
richer than its counterpart for Q(x,u, . . . ,uk, α1, . . . , αq)∂/∂u.
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However, if Q(x, t,u,u1, . . . ,uk)∂/∂u is a generalized conditional symmetry for (1),
and ∂Q/∂t �= 0, then F ∂/∂u is no longer a generalized symmetry for Q = 0, so the results
of [21, 24, 27, 29] on the structure of the respective systems (1) do not apply.

In this paper, we solve this problem and generalize the results from [21, 24, 27, 29].
Namely, we provide the complete description of all evolution systems (1) that possess
a generalized conditional symmetry of the form Q(x, t,u,u1, . . . ,uk)∂/∂u under the
assumption that the system Q = 0 is analytic and totally nondegenerate, see section 1 below
and chapter 2 of [1] for the precise definition of these properties, and the general solution of
this system can be found.

1. The main result

Suppose that the general solution of Q = 0 in implicit form can be written as

H(x, t,u, c1(t), . . . , cN (t)) = 0 (3)

for some natural number N, which is called the total order of the system Q = 0. We assume
here that H depends on N arbitrary functions ci(t), i = 1, . . . , N , in an essential way, and
that the condition det ∂H/∂u �= 0 holds.

Note that provided the system Q = 0 is (locally) normal, the number N can be readily
computed and is given by (7), see the discussion after lemma 1 for details.

As det ∂H/∂u �= 0 by assumption, by the implicit function theorem we can (at least
locally) solve (3) for u and obtain the general solution of Q = 0 in explicit form:

u = P (x, t, c1(t), . . . , cN (t)). (4)

Assume that repeatedly differentiating (4) with respect to x and solving the resulting
equations and (4) with respect to c1, . . . , cN , we can express ci via x, t,u,u1, . . .:

ci = hi(x, t,u,u1, . . . ,ur ) i = 1, . . . , N. (5)

Let B̃i (x, t, c1, . . . , cN ) = ∂P (x, t, c1, . . . , cN )/∂ci and Bi = B̃i(x, t, h1, . . . , hN),
i.e. Bi are obtained from B̃i by substitution of hi instead of ci . Likewise, let
R̃(x, t, c1, . . . , cN) = ∂P (x, t, c1, . . . , cN )/∂t , and set R(x, t,u,u1, . . . ,ur ) ≡ R̃(x, t,
h1(x, t,u,u1, . . . ,ur ), . . . , hN (x, t,u,u1, . . . ,ur )). Here it is understood that ci are not
differentiated with respect to t while evaluating ∂P /∂t .

Note that by the implicit function theorem B̃i = −(∂H/∂u)−1∂H/∂ci and R̃ =
−(∂H/∂u)−1∂H/∂t , whence it is immediate that knowing the general solution of Q = 0 in
implicit form (3) is sufficient for finding Bi and R.

Lemma 1. Let Q∂/∂u be a generalized conditional symmetry for (1). Then F̃ = F − R is a
generalized symmetry for the system Q = 0 considered as a system of ODEs.

Proof. Indeed, substituting F = F̃ + R and �Q = Q into (2) and taking into account that(
∂Q/∂t +

k∑
i=0

Di(R)∂Q/∂ui

)∣∣∣∣∣
M

≡ 0

we find (cf, e.g., [17]) that (2) reduces to(
k∑
i=0

Di(F̃ )∂Q/∂ui

)∣∣∣∣∣
M

= 0

which is exactly the determining equation for the generalized symmetries of the system Q = 0
considered as a system of ODEs. �
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LetW be the set of all points of an open domainV of the spaceV of variables x, t,u,u1, . . .

that satisfy the equations Dj(Q) = 0, j = 0, 1, 2, . . . , considered as algebraic equations.
Suppose that at all points ofW the system Q = 0 and all its prolongationsDj(Q) = 0, j ∈ N,
are locally solvable and have maximal rank, i.e. the system Q(x, t,u, . . . ,uk) = 0, considered
as a system of ODEs involving an extra parameter t, is totally nondegenerate onW , cf chapter 2
of [1]. Further assume that Dj(Q), j = 0, 1, 2, . . . , are analytic functions of x, t,u,u1, . . .

on V . Then by theorem 2.84 from [1] the system Q = 0 is normal on W , and hence can (at
least locally) be transformed into the form

uαnα = gα
(
x, t, u1, . . . , u1

n1−1, . . . , u
s, . . . , usns−1

)
α = 1, . . . , s (6)

via an appropriate change of variables. In what follows we assume that the number
Ñ = ∑s

α=1 nα is the same for the wholeW .
Note that under the assumptions made, the solution manifold M of Q = 0 can (again at

least locally) be identified withW (cf, e.g., [1]). In particular, Ñ coincides with the total order
N of the system Q = 0, cf (3), that is,

N =
s∑

α=1

nα. (7)

The general solution of (6) can be readily written in the form (4). Repeatedly
differentiating (4) with respect to x yields

uαj = ∂jP α(x, t, c1(t), . . . , cN (t))/∂x
j , j = 1, 2, . . . , nα − 1 α = 1, . . . , s

whence we find ci = hi
(
x, t, u1, . . . , u1

n1−1, . . . , u
s, . . . , usns−1

)
, i = 1, . . . , N .

For the sake of brevity, let us agree that in the subsequent discussion on symmetries of
Q = 0 and of (6) we shall consider these systems as systems of ODEs involving a parameter
t without repeating this each time explicitly.

By theorem 1 and remark 3 of Samokhin [28] any generalized symmetry of (6) that does
not vanish on the solution manifold of (6) has the form S∂/∂u with

S =
N∑
j=1

ψj (t, h1, . . . , hN)Bj (8)

where ψj are some smooth functions of their arguments.
Returning from (6) to Q = 0, we readily see that (8) describes all nonvanishing on M

generalized symmetries for Q = 0 as well, provided the functions hi are now defined by
means of (5), with P being a general solution of Q = 0.

However, this does not give all symmetries of Q = 0. The point is that we should take
into account the trivial generalized symmetries of Q = 0, which vanish on M. These can be
found in the following way. As Q = 0 is totally nondegenerate by assumption, any function
of x, t,u,u1, . . . depending on a finite number of uj and vanishing on M can be written [1]
as a linear combination ofDj(Qα), α = 1, . . . , s, j = 0, 1, 2, . . . , and the coefficients in this
linear combination are arbitrary smooth functions of x, t,u,u1, . . . .

Thus, the most general expression for the characteristics S of a generalized symmetry
S∂/∂u of the system Q = 0 is given by (cf [29])

S =
N∑
i=1

ψi(t, h1, . . . , hN)Bi +
m∑
p=0

s∑
α=1

χp,α(x, t,u, . . . ,ujp,α )D
p(Qα) (9)

where m and jp,α are arbitrary nonnegative integers, χp,α andψi are arbitrary smooth functions
of their arguments, and hi are defined by (5). Note that in (9) and (10) χp,α are s-component
vectors.
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By lemma 1 Q∂/∂u is a generalized conditional symmetry for (1) if and only if
(F − R)∂/∂u is a generalized symmetry for the system of ODEs Q = 0. Together with
(9) this yields the following result, which generalizes the classification theorems of Doyle [27]
and Svirshchevskii [21–23], and, partially, of Fokas and Liu [24] and of Kamran, Milson and
Olver [29].

Proposition 1. Let V be an open domain in the space V of variables x, t,u,u1, . . . , and letW
be the set of all points in V satisfying the equationsDj(Q) = 0, j = 0, 1, 2, . . . , considered
as algebraic equations. Suppose that the system of ODEs Q(x, t,u, . . . ,uk) = 0 is analytic
on V, is totally nondegenerate onW, and has the same total order N on the wholeW. Further
assume that Q∂/∂u is a generalized conditional symmetry for the system ut = F (1).

Then F on V can be represented in the form

F = R +
N∑
i=1

ζi(t, h1, . . . , hN)Bi +
m∑
p=0

s∑
α=1

χp,α(t, x,u, . . . ,ujp,α )D
p(Qα) (10)

where m and jp,α are some nonnegative integers, ζi and χp,α are some smooth functions of
their arguments, and hi are defined by (5).

In other words, (10), where ζi and χp,α now are arbitrary (smooth) functions of their arguments,
represents on V the most general F such that the evolution system ut = F of the form (1) has
the conditional symmetry Q∂/∂u that satisfies the conditions of proposition 1. Of course, if
we wish to fix the order n of F , then we should take special care to ensure that (10) contains
no terms of order higher than n.

Note that on M we can express ui , i � k, via x, t,u, . . . ,uk−1, using the equations
Dj(Q) = 0 (cf, e.g., [1]). Hence, if we require F to be analytic on V , then we can rewrite the
terms vanishing on M, i.e.

∑m
p=0

∑s
α=1 χp,α(t, x,u, . . . ,ujp,α )D

p(Qα), as

∞∑
r=1

dr∑
p1,...,pr=0

s∑
α1,...,αr=1

χp1,...,pr ,α1,...,αr
(t, x,u, . . . ,uk−1)D

p1(Qα1) · · ·Dpr (Qαr )

where χp1,...,pr ,α1,...,αr
(t, x,u, . . . ,uk−1) are analytic on V functions of their arguments, dr are

some natural numbers, and the series are assumed to be convergent on V . This representation
of the terms vanishing on M is more suitable if we want to fix the order n of F .

In order to make our results practically applicable we have to find the system of ODEs
in t being the result of reduction of the system ut = F on M. To this end we observe that
the general solution of the system made of ut = F and Q = 0 should be of the form (4) [17].
Then it is easy to see that ut = F with F (10) on M reduces to

N∑
i=1

B̃i(x, c1(t), . . . , cN (t))
dci(t)

dt
=

N∑
i=1

ζi(t, c1(t), . . . , cN (t))B̃i (x, c1(t), . . . , cN (t)).

(11)

The vector function P (x, t, c1(t), . . . , cN (t)) in (4) depends in an essential way on all
ci, i = 1, . . . , N , by assumption. Hence the vector functions B̃i(x, c1(t), . . . , cN (t)) =
∂P (x, c1(t), . . . , cN (t))/∂ci are linearly independent, and thus (11) reduces to the following
system of ODEs for ci (cf, e.g., [17]):

dci(t)/ dt = ζi(t, c1(t), . . . , cN (t)) i = 1, . . . , N. (12)

Its general solution depends on N arbitrary constants.
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In order to illustrate the above results, consider the following example. Let s = 1, so for
simplicity we write u ≡ u,Q ≡ Q,F ≡ F . Let Q = u2 − a(t) exp(−u1), where a(t) is a
smooth function of t. The general solution of Q = 0 is (cf, e.g., p 545 of [30])

u = c2(t) + (x + c1(t)/a(t))(ln(a(t)x + c1(t))− 1)

where c1(t) and c2(t) are arbitrary (smooth) functions, and hence we have h1 = exp(u1) −
a(t)x, h2 = u + exp(u1)(1 − u1)/a(t). By proposition 1, the most general F such that the
equation ut = F admits Q∂/∂u as a generalized conditional symmetry, reads

F = x(ȧ(t)/a(t))u1 − (ȧ(t)/(a(t))2) exp(u1)(u1 − 1) + (u1/a(t))ζ1(t, h1, h2)

+ ζ2(t, h1, h2) +
m∑
p=0

s∑
α=1

χp,α(t, x, u, . . . , ujp,α )D
p(u2 − a(t) exp(−u1))

where ζi and χp,α are arbitrary smooth functions of their arguments. If we restrict ourselves
to the case a(t) = const and F = u3 + f (x, t, u, u1, u2), we readily recover one of the results
of [31].

2. Linear conditional symmetries and invariant modules

As a further example, illustrating our approach, consider the case when the system Q = 0 is
a totally nondegenerate linear system of total order N = ∑s

α=1 nα of the form

uαnα =
s∑

β=1

nβ−1∑
j=0

gαβ,j (x, t)u
β

j α = 1, . . . , s (13)

i.e. Qα = uαnα −∑s
β=1

∑nβ−1
j=0 gαβ,j (x, t)u

β

j .

Clearly, the general solution of (13) is u = ∑N
i=1 ci(t)fi (x, t), where ci(t) are arbitrary

functions of t and fi ≡ (
f 1
i , . . . , f

s
i

)T
are linearly independent solutions of Q = 0.

Then we have hi = Zi/Z, where

Z =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

f 1
1 . . . f 1

i . . . f 1
N

∂f 1
1

/
∂x . . . ∂f 1

i

/
∂x . . . ∂f 1

N

/
∂x

...
...

...
...

...

∂n1−1f 1
1

/
∂xn1−1 . . . ∂n1−1f 1

i

/
∂xn1−1 . . . ∂n1−1f 1

N

/
∂xn1−1

...
...

...
...

...

f s1 . . . f si . . . f sN
∂f s1

/
∂x . . . ∂f si

/
∂x . . . ∂f sN

/
∂x

...
...

...
...

...

∂ns−1f s1
/
∂xns−1 . . . ∂ns−1f si

/
∂xns−1 . . . ∂ns−1f sN

/
∂xns−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
and Zi are obtained from Z by replacing ∂jf αi

/
∂xj by uαj (cf, e.g., [28, 29]).

Hence, Bi = fi (x, t), and R = ∑N
i=1(Zi/Z)∂fi(x, t)/∂t , so (10) becomes

F =
N∑
i=1

(Zi/Z)∂fi(x, t)/∂t +
N∑
i=1

ζi(t, Z1/Z, . . . , ZN/Z)fi(x, t)

+
m∑
p=0

s∑
α=1

χp,α(t, x,u, . . . ,ujp,α )D
p(Qα) (14)
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where χp,α and ζi are some smooth functions of their arguments and m and jp,α are some
nonnegative integers.

For instance, let s = 1, so for simplicity we write u ≡ u,Q ≡ Q,F ≡ F,fi ≡ fi , and
let Q = u3 − (a(t))2u1. Take f1 = exp(a(t)x), f2 = exp(−a(t)x) and f3 = 1 for the basis
of linearly independent solutions of Q = 0. Z = 2(a(t))3,W2 = exp(a(t)x)((−a(t))2u1 +
a(t)u2),W3 = 2a(t)((a(t))2u − u2), h1 = exp(−a(t)x)((a(t))u1 + u2)/(2(a(t))2), h2 =
exp(a(t)x)((−a(t))u1 + u2)/(2(a(t))2), h3 = u − u2/((a(t))

2), so the most general F such
that ut = F is conditionally invariant underQ∂/∂u is of the form

F = x(ȧ(t)/a(t))u1 + ζ1(t, h1, h2, h3) exp(a(t)x) + ζ2(t, h1, h2, h3) exp(−a(t)x)

+ ζ3(t, h1, h2, h3) +
m∑
p=0

χp(t, x, u, . . . , ujp )(up+3 − (a(t))2up+1).

In particular, if (a(t))2 = −1, and we restrict ourselves to the case whenF = F(u, u1, u2, u3),
then we readily recover one of the results of [24].

More broadly, if we return to the analysis of (14) and assume that ∂fi/∂t = 0, i =
1, . . . , N, s = 1, ∂Q/∂t = 0 and ∂F /∂t = 0 (whence ∂χp,α/∂t = 0 and ∂ζi/∂t = 0), then
(14) becomes a particular case of the formulae from [29] for F possessing an invariant module
spanned by f1, . . . ,fN . If we further specify to the case ∂F /∂x = ∂Q/∂x = 0, we also
recover some of the results of Fokas and Liu [24].

Note that if we require F (14) to be linear in uj , then (14) simplifies to

F =
N∑
i=1

(Zi/Z)∂fi(x, t)/∂t +
N∑

i,j=1

(Zj/Z)ζij (t)fi (x, t) +
m∑
p=0

s∑
α=1

χp,α(t, x)D
p(Qα) (15)

where χp,α(t, x) and ζij (t) are arbitrary smooth functions.
Using (15), we can, for instance, present a complete classification of Schrödinger-type

equations and their multicomponent generalizations in (1 + 1)-dimensional spacetime that
reduce to the system of ODEs on the linear space spanned by f1, . . . ,fN . In particular,
we expect that the use of (15) will make it possible to construct new interesting examples
of nonstationary quasiexactly solvable Schrödinger-type equations with explicitly time-
dependent potentials.

3. Conclusions and discussion

In this paper, we have obtained a complete description of evolution systems (1) admitting
a generalized conditional symmetry Q(x, t,u, . . . ,uk)∂/∂u under the assumption that the
system of ODEs Q = 0 is analytic and totally nondegenerate. This generalizes the earlier
work of Doyle [27], Svirshchevskii [21–23] and, partially, of Fokas and Liu [24] and of
Kamran, Milson and Olver [29], to the case when ∂Q/∂t �= 0. Our results can be further
applied for the construction of exactly solvable initial value problems in the spirit of Basarab-
Horwath and Zhdanov [31, 32] and for the classification of generalized symmetries (and
then of the evolution systems admitting these symmetries) compatible with the prescribed
boundary conditions, using the ideas of Adler et al [33]. Another interesting possibility is the
construction of explicitly time-dependent quasiexactly solvable models, cf the discussion in
previous section and in [29]. Finally, it would be of great interest to generalize the results of
this paper to the case of multiple space dimensions. We intend to analyse these topics in more
detail elsewhere.
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